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consider the problem of pricing to liquidate inventory in a duopoly. The problem

is modelled as a multi-player game with complete information. The unique Nash equilib-

rium for the game, which is also sequential, involves mixed strategies for the sellers. The

equilibrium extends in a limited fashion to multi-period and many seller situations.
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1 Introduction

Consider the problem faced by two firms seeking to liquidate their supplies of an identical

product. At most one firm has supply sufficient to satisfy the entire market, and the two

may not act in concert in setting price. To simplify matters, we assume a set of identical

potential buyers each with a reservation price of 1 and a demand for exactly one unit of

the product. Buyers, upon receipt of the price offered by the two sellers, are assumed to

act independently.

The problem we discuss, while abstracted to allow analytical tractability, captures a

large class of real world problems. The competition between opposing car dealerships at the

end of a model year, might entail the sort of price competition described here. Alternatively,

the model might aptly describe the situation faced by retailers liquidating their season-end

stocks of a fashion item. Our analysis is directed toward the short-run problem of pricing

to liquidate inventory rather than the long-run problem of price determination in a market.

The literature on price diskersion is, however, relevant to our study.

The recent history of the economic literature on price determination under duopolistic

competition is presented in some detail in Shubik (1984). A closely related line of research

is directed to explaining how price dispersion can arise in a market. Casual observation

reveals that identical products may sell for many different prices at a given point in time.

Starting with the seminal work of Stigler (1961) two general approaches have been followed.

One explains price dispersion as a by product of imperfect information on the part of

consumers. This may result in transient price dispersion, caused during price adjustment

(Diamond (1970)), or, in the presence of costly information, may result in persistent price

dispersion (as in Salop and Stiglitz (1977) and Salop (1977)). Another approach, similar

to the literature on monopolistic competition, makes use of heterogeneity among either

the sellers or buyers (for example, the geographical distribution of sellers may be used to

segment a market into local monopolies, as in Shilony (1977) and Butters (1977)). Finally,

heterogeneity among consumer preferences may be used to obtain a temporal dispersion of

prices as sellers try to discriminate among consumer types (Sobel 1984).

In our model, buyers and sellers are homogeneous, and buyers are perfectly informed

about the prices offered by the sellers. We approach the problem as a non-cooperative game.
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Our characterization of equilibrium behavior stems from a game theoretic analysis of the

situation rather than from either incomplete information or from exogenous heterogeneities

which serve to restrict the interactions between the sellers. We are motivated by the recent

success of game-theoretic techniques in the analysis of the bargaining problem and the

apparent similarity between the inventory liquidation problem and the classical bargaining

problem. At issue in the liquidation problem is how to divide the value of the inventory

between the sellers and the buyers. Indeed, were there exactly one seller, one buyer, and

one unit of product, our problem would be a version of the classical bargaining problem.

The main difficulty with the game theoretic approach is that it need not identify unique

equilibrium conditions. There may exist a large number of equilibria. This problem arises

in the bargaining problem: Nash equibrium prices comprise a continuum between 0 and 1.

Rubinstein (1982) provided a fundamental insight into the structure of this problem (and

its extension to multiple periods) by restricting attention to sub-game perfect equilibria

(see Selten (1965). Roughly, sub-game perfect equlibria require that the players eschew

strategies which are not credible (i.e., players may not threaten to take actions which are

not in their own self interest). For the bargaining problem and it's multiperiod extension,

Rubinstein obtains a unique sab-game perfect equilibirum.

An appropriate equilibrium concept is that of sequential equilibrium. This is a refine-

ment of Nash equilibrium, in that optimality is required not only along the equilibrium

path but also off the equilibrium path. See Kreps and Wilson (1982) for details. We obtain

a unique Nash equilibrium. This equilibrium is also sequential. In this equilibrium, sellers

randomize on an interval between a price of 1 and a lower threshold. The mixed strategy

of the seller with a higher supply stochastically dominates the mixed strategy of the other

seller. This randomization drives the price dispersion for the market. Thus, our equilbrium

is characterized by randomly chosen prices, rather than a set of distinct but deterministic

prices (the common result of models with producer or consumer heterogeneity). In this

respect our results are similar to Shilony's, although he invokes locational heterogeneity of

producers. In Section 2 of this paper, we present the details of the model and the equi-

librium strategies. The results proceed by way of a sequence of lemmas characterizing the

nature of equilibrium behaviour. Section 3 explores briefly the robustness of our proposed

equilbrium when there are either many periods in which to liquidate the inventory or more
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than two sellers. We will see that there are versions of the equilibrium which hold in each

case, however the equilibrium is no longer unique. Conclusions are presented in Section 4.

2 The Basic Model

There are m risk-neutral buyers of an indivisible commodity, and two (also risk neutral)

sellers, called 1 and 2, endowed with n, and n2 units of the product, respectively. The value

to a buyer of a unit of the product is I. Each buyer demands exactly one unit. The unit

cost to the sellers 0. If the buyer obtains a unit of the good at price p, then his utility

is (I - p), if he does not trade his utility is 0. If a seller sells s units at price p, then his

utility is sp. The sellers are assumed to set prices independently and simultaneously, and

buyers make their purchase decision independently. We view the price setting problem as

a non-cooperative game in which sellers and buyers must divide the value of the units sold

among themselves. The "actions" available to the players are price offers (for sellers) and

accept/reject decisions (for- buyers).

We start with the simplest possible model. All trade must take place in a single period

there are exactly two sellers and there are many buyers. In section 3 we will explore the

impact of changing our assumptions about the timing of sales and the number of sellers.

The actions available to the sellers are price offers which are assumed to be made

simultaneously and independently. Buyers may accept or reject the offered prices. If there

is excess demand then the available supply is allocated randomly over the buyers. If there

is excess supply at a given price then demand is allocated randomly between the sellers.

The sellers make simultaneous price offers pi and P2 respectively. Without further loss

of generality, we can restrict the sellers price offers to 10, 1]. The buyers' actions are either

accept or reject for each price. All this is common knowledge among the buyers and the

sellers. This defines a game with complete information. We show that this game has a

unique Nash equilibrium in which the sellers use randomized strategies. This equilibrium

is also sequential.

The buyers' optimal strategy is straightforward. They accept the lower price and buy

from the higher price seller only after the low price seller's supply is exhausted. In addi-

tion, they reject any price greater than 1. The interesting question revolves around the
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equilibrium price offers of the sellers. The stiategy for seller i, i = 1,2, is denoted by F,(p),

a probability distribution function on 10, 1]. We allow the possibility that F assigns all

its probability mass to a point. Two trivial cases may be dispensed with immediately: if

nlj + n2 :5 m then the unique equilibrium is for both sellers to quote a price of I and for

the buyers to accept the price; if min(ni, n2) > m then both sellers offer a price of 0 and

all buyers accept.

For the remainder of this section we will assume that nj > 0, n2 > 0, min(ni, n2) < m

and n1 + n2 > m. Let wr"(p 1,p 2 ) denote the payoff to seller i when seller I offers P, and

seller 2 offers P2 and the buyers play their best response, that is, they buy from the cheapest

seller first.

npi, if P1 < P2

X'(PIP2)= max((m - n 2 )Pj,0), if P1 > P2

m( n+ )PI, if P1 = P2

n2P2, if P<P i

X 2 (pj,p2 ) = max((m - nl)p2,0), if P2 > P1

M( n )2 if P1 = P2
+ n2

Denote by ri (pi, F2) (r 2 (FI,p2 )) to payoff to player 1 (2) when he uses a pure strategy pi

(p2) and his opponent uses the mixed strategy F2 (FI).

r'(p1, F2) =0 j 1(P1,P2)dF2(P2)

r (F, P 2) - ,(p 1 ,p2)dF(p).

The following characterizes any Nash equilibrium of this game.

PROPOSITION 1: Suppose that nj > 0, n2 > 0, n + n2 > m, min(ni,n) < m. Let

(F1 , F2) be the sellers strat-gies in a Nash equilibrium in this game. Then,

a) the support of F,, i =1,2, is A, 1], s > 0;

b) F,, i = 1,2 is atomless on 1._, 1);

c) if zi(I) is the probability mass assigned by Fi at 1 then zi(1)z:(1) = 0.
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Proposition 1 implies:

COROLLARY 1: There does not exist an equilibrium in which either seller employs a pure

strategy.

Proposition 1 is proved through Lemmas 1-5 below.

LEMMA 1: Suppose that (Fl, F2) are the sellers' strategies in an equilibrium. Let ai -

inf{ z E 0, ll i (z) > 0), i = 1,2. Then,
a) aI = a2  a;

b) a > 0.

PROOF: a) Suppose al > a2 . Let cI be such that a' - a2 > C, > 0. Then seller 2 can

improve his payoff by modifing his mixed strategy so that he charges a price of a2 + cl

whenever his equilibrium mixed strategy requires him to quote a price in the interval

.2, s + (1), because

n2(g 2 + el) > n2 (42 + X), VX E [Aa2 + fl).

Thus a. < * A symmetric argument establishes that a2 < a1. Therefore, we must have,

a1 = a2 = a.

b) Suppose a = 0 and that n1 > n2. Then, since n 2 < m, seller 1 is better off quoting

a price of 1 rather than a price in the interval 10,c), for small enough, positive e. Hence

a> 0. U

LEMMA 2: Suppose that (FI, F2) are the sellers' strategies in an equilibrium. Let 1 =

sup{x E {0, I]IF,(z) < 1), i = 1,2. Then,

b) a= 1.

PROOF: a) Suppose that l2 > U1 and n) > m. Then r2(Fl,p) > r 2(F,,P) = o, Vp E

('l a), V > al. Thus, F2 cannot be a best response.

On the other hand, suppose that 12 > a1 and n1 < m. Then r 2(Fl,p) = (m - nl)p <

(m - nl) = r 2(Fl, i), Vp c (al, I). Therefore, U2 = 1, F2(p) - F2 (i 1) = 0, Vp E (1', 1) and,

from the definition of 12, F2 (1) - F2(1-) > 0. Let z2 (1) = F2(1) - F2(1-).

Next, suppose that, z:2(l), the probability mass assigned by F2 at al, is zero. Then,

from the fact that F2(11) - F2(!l - c) -. 0, as e -- 0, it follows that rl(p, F2) < rl ( -
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eo, F2), Vp E (d' - co, 1], for small enough co > 0. But this contradicts the fact that F, is a

best response. Therefore, Z2(U l ) > 0. This in turn implies that r1(w1, F2) < r, (a, - C, Fi),

for all small enough c > 0. Therefore, zill), the probability mass assigned by F, at a'

must be zero. But then, r 2 (F, 1) = (m - n1 ) > (m - ni)d' = r2(F,l). Therefore, if

a2 > a1, then if z2(d1) > 0, F2 cannot be a best response to F1 , whereas if z2(WI) = 0, then

F, cannot be a best response to F2 . Hence U2 < &I. Similarly, 32 > a, and thus, in any

equilibrium, we must have d1 = a2 = a.

b) Next, suppose that a < 1. Then, by an argument similar to the one in the preceding

paragraph, we can show that either zj(d) or Z2(6) is equal to zero. Suppose that z2(a) = 0.

But then, for small enough, positive C, r'(p, F2) < r, (1, F2), Vp E (d-lJ. This contradicts

our assumption that F, is a best response. I

LEMMA 3: In any equilibrium, the sellers' strategies cannot have a mass point at a price

less than 1, i.e., there does not exist x < 1, such that F,(x) - F,(x-) > 0, i = 1,2.

PROOF: Suppose that for an equilibrium pair of mixed strategies F1 and F2 , there exists

x < I such that FI(x)-FI(x-) = z,(x) > 0. Suppose that for all c > 0, F2 (x+)-F2(x) > 0.

Then seller 2 would do better to modify his mixed strategy to F2, where F2 is obtained

from F2 by transfering the probability mass in the interval (z, z + c) to z - C. This follows

from:

r2(Fy) <5 (1 - Fi(x))n2(x + () + F(x)(x + e) max(m - ni,0), Vy E (x,z+ C),

r 2(F,, - C) > (I - F 1(zj)n 2 (X - C) + F,(X)(X - c)max(m - n, 0).

Therefore,

r (F,X- ) - r(F,,Y) ? z,(z)xmin(n, + n2 - m,n 2 ) - o(C), VyE (X,x+ C),

which is positive for small enough c. But this contradicts our hypothesis that F2 is a best

response. Hence there exists co > 0 such that F2(z + co) = F2(x). By a similar argument,

r2(2) = F2(X-).

From Lemma 2 we know that F2 (z) < 1. But then, seller I could do better by transfering

the probability mass at x to x + Co/2. Hence, F, cannot be a best response to F2 . I

LEMMA 4: In any equilibrium, at most one seller's strategy can have a mass point at a

price of one.
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PROOF: If both sellers use strategies which have an atom at one, then any seller can do

better by shifting the atom to a price slightly less than one. |

LEMMA 5: INo "gaps" in equilibrium strategies.]

In any equilibrium, if F(x) E (0, 1), i = 1,2, then Vy > x, F,(y) > F,(z).

PROOF: Suppose that F1(x) E (0, 1) and that there exists y E (z, 1) such that F1(y) -

FI(z). Then, F2(y) = F2(2!); otherwise if seller 2 modifies his strategy and shifts the

probability mass in the interval (z, y) to y, his payoff improves.

Without loss of generality, we may assume that F1(x) - FI(z - e) > 0, Vc > 0. By

Lemma 2 we know that F2(x) < 1, and by Lemma 3 that F, and F2 are atomless at prices

below one. Then, for small enough co > 0, if seller 1 transfers the probability mass assigned

by F, to the interval Iz - eo, z] to y, his payoff improves. This contradicts the hypothesis

that F1 is a best response. |

The proof of Proposition 1 is immediate.

Proposition 1 states the necessary conditions for any equilibrium in the game. We

will make use of this structure, and show that there exists a unique equilibrium. (The

equilibrium is unique in the sense that the players' strategies in any other equilibrium

differ only on a set of measure zero).

Suppose that n1 + n2 > m, n 2! n2 > 0 and m > n2. Let ((zI(1), -), (--(2), F2 )) be a

pair of equilibrium strategies. Seller i quotes a price of 1 with probability zi(1), and with

probability 1 - z,(1) draws a price frcrn the atomless distribution fti, which has support

a, 1]. In addition, zI(1)z2(1) = 0. From Propositon I we know that any equilibrium must

have this structure.

Suppose that z2(1) > 0. Then zi(1) = 0. If nf ? m, then clearly seller 2 does better

by moving the probably mass at 1, z2(1), to any price less than 1. Therefore assume that

nj < m. Since, in any equilibrium, seller 2 must be indifferent between offering a price of

1 and almost every price in the interval g, I), we have,

m - n = n2(g + c)(1 - PI(g + c)) + (m - n)(a + c)F(a + c), for almost all e E (0, 1 - a).

Letting e \ 0, we get
mr- n1

m - 1 n 2a or a=-
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Similarly, since seller 1 is indifferent between offering almost any price close to 1, and

almost any price close to a, we have

(m - n2 )(1 - Z2()) + nIZ2(1) = nIS = nj (m - n1 )
n-

Z2(l = -- < 0,
n2

as n > n. This contradicts our assumption that z2 (1) > 0. Therefore we must have

2(1) = 0. A similar argument shows that

m - n2

f(1)

and,
z (1) =min(m,ni) - n2 (2)

Thus in any equilibrium, a, z2(1), and zi(1) must have the values specified above. Next,

we show that F1 , F2 , must be unique except on a set of measure zero. The next equation

states that player I must be indifferent between offering a price of I and any other price in

[4,1J.

rn-n=(1- F2(z))nlz+F2 (P)(rn-n 2 )Z, V E [g,iJ.

(The above equation need hold only for almost all x, for an equilibrium. Thus the

equilibrium we obtain, is unique except on a set of measure zero).

Therefore,

P2(Z) n -E(3)n1 +n2 _m( Z) x [ ,]

Similarly

zj(1)n 2 + (1 - zi(1)) min(rn - ni,0)

(zi(l) + (1 - zj(1))(1 - P 1(x)))n 2 X + (1 - zj(l))Pij(x) min(m - nl,O)x, Vz E (, 11.

Therefore
F,T) (I + -,(- ) Vx E 1, 1). (4)

i n, + n 2 - M (4

Hence, we have proved:
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*o PROPOSITION 2: Suppose ni + n2 > m, n1 ,n2 > 0, n1 ? n2 , m > n2. Then, in the

unique Nash equilibrium of this game:

a) The buyers accept any price in the interval 10, 1]; they prefer to buy from the seller who

offers the lower price, and if unable to do so, they buy from the other seller.

b) Seller I offers a price of I with probability zi (1), and with probability (1 - zi(1)) draws

a price from the atomless distribution P; seller 2 offers a price from the same distribution

, where

zI(1) = min(m, nj) - n2
nl

P(-) = (1 -XE),,
n1 +n 2 - M X

m- n2

ni

This equilibrium is also sequential.

The nature of our equilibrium reflects the intuition one obtains from considering the

obvious cooperative arangement that the sellers might make: one seller agrees to sell im-

mediately at a price low enough to induce the buyers to accept right away, and the other

seller sells to the remaining buyers at the monopoly price. The difficulty lies in how to

enforce such an arrangement absent the ability to collude on price. Any price which re-

sults in profitable early sales encourages undercutting. Indeed, were the sellers restricted

to pure strategies, it is clear that any price above the lower threshold invites undercutting;

however, the best response to a price equal to the lower threshold is a price of 1. Our

non-cooperative analysis results in unique randomized equilibrium strategies. The sellers

randomize continuously between a price of I and some lower threshold. The supplier with

the larger supply also has a positive probability of charging exactly I. Buyers buy imme-

diately starting with the seller with the lower price. By randomizing, players are able to

hide their intentions, thereby eliminating the motivation for undercutting which would be

present were the players restricted to pure strategies.

3 Many Sellers and Multiple Periods

Our purpose here is not to propose our equilibrium as the general solution for a market
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game (which it is not), but to illuminate it's robustness with respect to small deviations

from the pure duopoly, single period model.

3.1 The Many Sellers Model

Suppose now that there are k sellers with supplies nr > n2 _ rs > .. > n and the

game proceeds as described in section 2. We will see that our equilibrium extends to the

multiseller case in which there is one large sellers and a collection of small sellers.

In the equilibrium of Proposition 3 below, there are k sellers. Sellers 3 through k sell

at a price a, and sellers 1 and 2 use the equilibrium strategies of section 2, randomizing

between a and 1. Our assumptions amount to requiring that the supplies of each of sellers

2 through k are quite small in comparison to the supplies of seller 1. There exist k - 2

other equilibria, which are similar in structure. In these equilibria, sellers I and j, j _ 2,

use the equilibrium strategies of section 2, randomizing between a and 1, while the other

sellers charge a price of a.

PROPOSITION 3: Suppose that nj > n2 ? ... > nk satisfy i=-2 ni < m, and for each

j=3,...,k, E ni > m. Define N.. = E ta = (n - N-I)/nl, zi(1) = (min(m, N- 2 ) -
i$2,j 1 s,

N..i)/ni, and F(z) = (1 - ._/x)nl/(N - in). Then a sequential equilibrium for the game is

given by the following:

a) The buyers accept any price in the interval [0, 11 starting with the lowest price seller.

b) Sellers 3,..., k offer price a, seller I offers a price of 1 with probability zi(1) and

chooses a price randomly according to F(z) with probability I - zi(I), seller 2 chooses a

price randomly according to P(z).

PROOF: As in Section 2, the buyers strategy is a best response. Proposition 2 implies

that given the choices of players 3,..., k, players 1 and 2's choices are optimal. We will

show that player j (j = 3, . ., k) will not wish to deviate. It is also clear that a price of a

dominates any smaller price for seller j. We need only show that player j cannot improve

his expected payoff by offering a price greater than a. Let ri(z) denote player j's expected

payoff when he offers a price of x and the other players play their equilibrium strategies.

Then, under the hypotheses of the proposition, player j sells a non-zero quantity if and
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only if player 1 offers a price higher than z. The amount he sells in this event is ni. Thus,

r,(x) = (i - FI(z))njx,

or

Substituting from the definitions and from our assumptions on n, yields,

r, (x) = n _g, VX E q,lI].

In the equilibrium of Proposition 3 the largest seller and one of the other sellers play

the duopoly pricing game ignoring the other smaller sellers. The equilibrium price for the

smaller sellers is a by product of this competition.

3.2 The Multiple Period Model

Let t = 0,1,2,... denote time periods. At time t = 0 the game starts as given in

the preceding section. Buyers who accept a price offer in period t, exit the game upon

receiving one unit of the good at that price. Buyers who reject the price offers in period t

have another opportunity in period t + I to purchase the product. Sellers make a new price

offer for their remaining units in each period. Let n denote the inventory remaining with

seller i at the beginning of period i and let mt denote the number of buyers who have yet

to purchase a unit at the beginning of period t. We assume a common discount factor of 6

per period for both buyers and sellers.

Once again we have trivial unique equilibria when n° + n° < m° or if min(n ° , no) > m.

In the former case the equilibrium price is 1 and in the latter 0. Henceforth, assume

no + no > m min(nO, ne ) < rn, and no > nO. In a fashion similar to lemma I we have.

LEMMA 7: When no + no > rn, min(n o , no) < rn then there is no Nash equilibrium

involving pure strategies only.

Let V (n', mr), and

(1; i') = max{O, min(m' n) - n'
1 (5)n,

I1I



=max (n4,n') atIt
+n 29 VX a 1, (6)

where,

M1 - min(n',n) (7)

The equilibrium outcome in the one period model remains an Nash equilibrium outcome

in the multiple period game, when max(n ° , n° ) < mo. However, this equilibrium is not

sequential because if an off-the-equilibrium path subgame starting at n! < < nis

reached, and seller j offers the lower price, then a single buyer is better off deviating,

rejecting both offers and obtaining a price of 0 in the next period. Such a subgame may be

reached if there are deviations by more than one player. Similarly, the equilibrium given

below breaks down if max(n°,n u) _ m° > min(n1, n).
PROPOSITION 4: Assume that no + no > m, no, no > 0, max(n ) < Then, the

following strategies comprise a Nash equilibrium in the infinite period setting:

Sellers Strategy: At any stage t, if n, > 0, n' > 0, then seller i offers a price of I with

probability zi(1; i), and with probability (1 - z,(I; i)) draws a price from the atomless

distribution F(.; it). lfn! = 0 and mt > 0, then the seller j offers a price of 1.

Buyers Strategy: At any stage t, if nt > 0, n2 > 0, accept the lower offer, if it is not

greater than 1; if unable to buy from the seller who offers the lower price, then accept the

other offer provided it is not greater than 1. Ifn - 0 then accept a price ofI from sellerj.

PROOF: Consider a buyer who is still left in the game in period t. If n! = 0, then n . > 0

and seller j will offer a price of I in every period r, r > t. Hence the buyer cannot do better

by rejecting the offer in period t. If n' > 0, n4 > 0, then his strategy is optimal, because if

the other buyers accept the sellers' equilibrium offers, and he rejects then from next period

on there will only be one seller who will always offer a price of 1.

Consider a seller, say seller 1. If n' = 0 and mt > 0, then given the buyers strategy,

he cannot do better than offer a price of 1. If n' > 0, n2 > 0, mr > 0, then there are two

types of deviations by seller 1. An offer p < at(i), yields a lower payoff than offering _1(il).

Hence this deviation is not profitable. On the other hand, an offer p > I will be rejected by

the buyers, n2 of whom will accept seller 2'. equilibrium offer and exit the game, leaving

seller I with an expected payoff of at most (Mi -n) tomorrow, which is less than (n2 -4)
today, his payoff if he offers a price of I today. Given seller 2's and the buyers' strategies,
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seller I is indifferent between offering any price between _'(V') and 1. Hence his strategy is

optimal. U

4 Conclusion

We have established the existence of a unique Nash equilibrium which is also sequen-

tial for a somewhat stylized description of an inventory liquidation problem. Equilibrium

play requires that the players make use of randomized strategies, and this results in price

dispersion. The dispersion arises as players attempt to hide their intentions so as to avoid

price undercutting. This notion of dispersion is different from the commonly obtained price

dispersion result wherein sellers propose differing deterministic prices which take advantage

of market segmentation.

We have established a limited robustness for our proposed equilibrium behavior. The

equilibrium obtained in the two person, two period model remains an equilibrium when

liquidation occurs over many periods, or if there are additional (small sellers). In these two

cases however, we can no longer guarantee the uniqueness of the equilibrium.
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